Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Neurosci Methods ; 380: 109679, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35914577

RESUMO

BACKGROUND: Chemogenetics is a powerful tool to study the role of specific neuronal populations in physiology and diseases. Of particular interest, in mice, acute and specific activation of parafacial zone (PZ) GABAergic neurons expressing the Designer Receptors Activated by Designer Drugs (DREADD) hM3Dq (PZGABA-hM3Dq) enhances slow-wave-sleep (SWS), and this effect lasts for up to 6 h, allowing prolonged and detailed study of SWS. However, the most widely used DREADDs ligand, clozapine N-oxide (CNO), is metabolized into clozapine which has the potential of inducing non-specific effects. In addition, CNO is usually injected intraperitoneally (IP) in mice, limiting the number and frequency of repeated administration. NEW METHODS: The present study is designed to validate the use of alternative DREADDs ligands-deschloroclozapine (DCZ) and compound 21 (C21)-and a new administration route, the voluntary oral administration. RESULTS: We show that IP injections of DCZ and C21 dose-dependently enhance SWS in PZGABA-hM3Dq mice, similar to CNO. We also show that oral administration of CNO, DCZ and C21 induces the same sleep phenotype as compared with IP injection. COMPARISON WITH EXISTING METHODS AND CONCLUSION: Therefore, DCZ and C21 are powerful alternatives to the use of CNO. Moreover, the voluntary oral administration is suitable for repeated dosing of DREADDs ligands.


Assuntos
Drogas Desenhadas , Animais , Drogas Desenhadas/farmacologia , Modelos Animais de Doenças , Imidazóis , Camundongos , Sono , Sulfonamidas , Tiofenos , Ácido gama-Aminobutírico
3.
Sleep Adv ; 3(1): zpac022, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37193408

RESUMO

Aging and Alzheimer's disease (AD) are both associated with reduced quantity and quality of the deepest stage of sleep, called slow-wave-sleep (SWS). Slow-wave-sleep deficits have been shown to worsen AD symptoms and prevent healthy aging. However, the mechanism remains poorly understood due to the lack of animal models in which SWS can be specifically manipulated. Notably, a mouse model of SWS enhancement has been recently developed in adult mice. As a prelude to studies assessing the impact of SWS enhancement on aging and neurodegeneration, we first asked whether SWS can be enhanced in animal models of aging and AD. The chemogenetic receptor hM3Dq was conditionally expressed in GABAergic neurons of the parafacial zone of aged mice and AD (APP/PS1) mouse model. Sleep-wake phenotypes were analyzed in baseline condition and following clozapine-N-oxide (CNO) and vehicle injections. Both aged and AD mice display deficits in sleep quality, characterized by decreased slow wave activity. Both aged and AD mice show SWS enhancement following CNO injection, characterized by a shorter SWS latency, increased SWS amount and consolidation, and enhanced slow wave activity, compared with vehicle injection. Importantly, the SWS enhancement phenotypes in aged and APP/PS1 model mice are comparable to those seen in adult and littermate wild-type mice, respectively. These mouse models will allow investigation of the role of SWS in aging and AD, using, for the first time, gain-of SWS experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...